
THE FFT: AN ALGORITHM 
THE WHOLE FAMILY CAN USE 
The fast Fourier transform is one of the fundamental algorithm families in digital 
information processing. The author discusses its past, present, and future, along with its 
important role in our current digital revolution. 

Ap+pei hycooley and Xikey described a recipe 
for computing Fourier coefficients of a time se- 

hat used many fewer uiachine operations 
an.did the straightfoiward procedure ... What 

lies over the horizon in digital sipial prmcessing is 
anyone's guess, hut1 think it will surprise us all. 

.s. Audio Electronics, 

, ,  

hese days, it is almost beyond helicf 
that  there was a time before digital 
technology. It seems almnst every- T one realizes that the data whizzing 

over the Internet, bustling through our modems, 
or crashing into onr cell phones is ultimately jnst 
a sequence of 0's and 1 $-a digital scquencc- 
that magically makes the world the convenient, 
high-speed place it is today Much nf this magic 
is due to  a funily of algnrithins that collectively 
go by the name thcfnst Fuurier tmn.for" In- 
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deed, the FFT is pcrhaps the most ubiquitous 
algorithm used today to  analyze and manipulate 
digital or discrcte data. 

My own research experience with various fla- 
vors of the FFT is evidence of its widc rangc of 
applicability: electroacoustic music and audio- 
signal processing, inedical imaging, image pro- 
cessing, pattern recognition, computational che- 
mistry, error-correcting codes, spcctral methods 
for partial differential equations, and last hut not 
least, mathematics. Of course, I could list inany 
more applications, notably in radar and cominu- 
nications, but space and time restrict. E. Oran 
Brigham's hook is a n  excellent placc to start, es- 
pecially pages two and thrcc, which contain a 
(nonexhanstive) list of 77 applications!' 

Hlstory 
We can trace the FFT's first appearance, like 

so much of mathematics, hack to Gauss! His in- 
terests were in certain astrnnomical calculations 
(a recnrrciit area of FFT application) that dealt 
with the intcrpolation of asteroidal orbits from 
a finite set of equally spaced observations. Un- 
doubtedly, the prospect of a huge, laborious hand 
calculation provided good motivation to dcvelop 
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Discrete Fourier transforms 
The fast Fourier transform efficiently computes the discrete 

Fourier transform. Recall that the DFT of a complex input vec- 
Equation 5 that we can rewrite Equation 1 as 

N --1 
tor of length N, X = ( X ( O )  ..., X(N- 1)). denoted f , is an- 
other vector of length N given by the collection of sums 

X^(c,d) = $ W ~ ( c N z + d ) ~ X ( o , b W $  (6) 
b=O 07.0 

The computation is now performed in two steps. First, 
(1) compute for each b the inner sums (for ail d) 

where WN = e x p ( 2 n f i i N )  . Equivalently, we can view 
this as the matrix-vector product FN X< where 

FN = ((Vik)) 
is the so-called Fouriermotrix. The DFT is an invertible trans- 
form with inverse given by 

Thus, if computed directly, the DFT would require N’ oper- 
ations. Instead, the FFT is an algorithm for computing the 
DFT in O(N log N) operations. Note that we can view the 
inverse as the DFT of the function 

so that we can also use the FFT to invert the DFT. 

circular or cyclic convolution into pointwise multiplication, 
for example, 

One of the DFT‘s most useful properties is that it converts 

( 3 )  X 3 ( k )  = f (k)Y^(k)  

where 

(4) 

Consequently, the FFT gives an O(N log N) (instead of an N*) 
algorithm for computing convolutions: First compute the 
DFTs of both X and U, then compute the inverse DFT of the 
sequence obtained by multiplying pointwise x̂  and Ŷ  . 

In retrospect, the idea underlying the Cooley-Tukey FFT is 
quite simple. If N= NiN2, then we can turn the 1 D equation 
(Equation 1) into a 2D equation with the change of variables 

j=j(a,S) = aN1 t b, 0 20 < Nz, 0 2 b <NI 
k = k(c,d) = CN’t d, 0 2 c < NI, 0 5 d < Nz ( 5 )  

Using the fact W;“’ = W;W/ , it follows quicklyfrom 

which is now interpreted as a subsampled DFTof length 
N2. Even if computed directly, a t  most N1Nz2 arithmetic op- 
erations are required to compute all of the X(b,d).  Finally, 
we compute NlN2 transforms of length NI: 

which requires at most an additional NINIZ operations. 
Thus, instead of (Nl N2)‘ operations, this two-step approach 
uses at most (NI N2)(Nl + N2) operations. If we had more 
factors in Equation 6, then this approach would work even 
better, giving Cooley and Tukey‘s result. The main idea is 
that we have converted a 1 D algorithm, in terms of index- 
ing, into a 2D algorithm. Furthermore, this algorithm has 
the advantage of an in-place implementation, and when 
accomplished this way, concludes with data reorganized 
according to the well-known bit-reversal shuffle. 

This “decimation in time” approach is one of a variety of 
FFT techniques. Also notable is the dual approach of ”deci- 
mation in frequency” developed simultaneously by Cordon 
Sande, whose paper with W. Morven Gentleman also con- 
tains an interesting discussion on memory consideration as 
it relates to implementational issues.’ Charles Van Loan‘s 
book discusses some of the other variations and contains an 
extensive bibliography.’ Many of these algorithms rely on 
the ability to faclor N. When N is prime, we can use a differ- 
ent idea in which the DFT is effectively reduced to a cyclic 
convolution instead.’ 
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a fast algorithm. Fcwer calculations also imply 
less opporhil l i ty for error and tbcrcfore lcad to 
iiuinerical stability. Gauss obscrved that hc could 
break a Fourier series of handwidth N = NlN2 
i n to  a co iqn i t “ t ion of N2 subsampled discrete 

Fourier t rms~orms of length NI, which are c o n -  
bioed as NI DlTs of lcng th  N2. (See the “Dis- 
crete Fouricr transforms” sidcbar for (letailcd 
infcirmation.) Gauss’s algorit l im was iievcr pub- 
lished outside of his collccted works. 
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The  statistician FrankYates pul&licd a less gen- 
eral hut still important version of the FET in 1932, 
which wc can usc to efficiently ctitnpnte the 
Harlamard and Walsh uansf~irtns? Yates’s “inter- 
action algorithm” is a East technique designed to 
compute thc analysis of variance for a 2”-factorial 
design and is dcscribed in almost any text on statis- 
tical design and analysis of expcriments. 

Another important predecessor is tlie work of  
G.C. Danielson and Cornelius Lanczos, per- 
Conned in the service of x-ray ciystallography, an- 
other area for applying FYI’ techno lo^.' -17beir 
“doubling trick” showed how to reduce a DFI‘on 
2 N points to  two DIiTs on N points using only N 
extra operations. Today, ith amnsing to notc their 
problcin sizes and timings: “Adopting these im- 
provements, the approximate times for Fourier 
analysis are 10 minutes for 8 coefficients, 25  min- 
utes for 16 coefficients, 60 minutes for 32 coefli- 
cients, and 140 minutes for 64 ~ocfficicnts.”~This 
indicates a running time of about .37 Nlog Nmin- 
lites for an N-point DFI‘! 

Dcspitc thesc early discoveries of an Fm, it 
wasn’t until James W. Cooley and John W. Tukey’s 
article that the algorithm gained any notice. l’he 
story of their collaboration is an interesting one. 
Ti lcy  arrived at the basic reduction while in a meet- 
ing of President ICetitiedy’s Science Advisory C o n -  
mittee. Among thc topics discussed were tecliuiques 
for offshore detection ofiiuclear tests in tlie Soviet 
Union. Ratification of a proposed Unitcd States- 
Soviet Union nuclear test haii depended on thc de- 
vekipmem of a method to detect the tests withnut 
actually visiting Soviet nuclear facilitics. One idca 
was to analyze scismological tiine-series data ob- 
taincd from offshore seisniomcters, the length and 
number of which would reqnirc hst  algorithm to 
compute the DFT Other possible applications to 
national secnrity included the long-range acoustic 
detection of nuclear submarines. 

Richard Gamin of IBM was another participant 
at  this meeting, and when Tukcy showed him the 
idea, he immediately saw a wide range of potential 
applicability and qnickly set to getting the algorithm 
implemented. H e  was directed to Cooley, and, 
necding to  hide the national security issncs, told 
Coolcy that he wanted the code for another pro1)- 
Icm of interest: the &termination of tlie spin- 
orientation pcriodicities in a 3D crystal of Hc3. 
Coolcy was iiivolved with other projects, and sat 
down to program the Cooley-Tukey FkT only after 
much prodding. In short order, lie and Tukey prc- 
pared a paper which, for a niathematics or computer 
science paper, was published almost instantaneously 
(in six months).’ This publication, as well as Gar- 

win’s fervent proselytizing, did a lot to publicize the 
existence of this (apparently) new fast algorithm.“ 

The  timing of the announceiuent was such that 
usage spread quickly The  ronghly simultaneous de- 
vclopmcnt of analog-to-digital converters capable 
of producing digitized samples of a time-varping 
voltage at rates of 300,000 samples per sccond had 
already initiated something of a digital revolution. 
This devclopinent also provided scientists with 
heretofore uniniagined quantities of digital data to 
analyze and nnnipulate (just as is thc case today). 
T h c  “standard” applications of FFT as an analysis 
tool for waveforms or for solving PDEs generatcd a 
treniendons interest in the algorithm a priori. nut  
moreover, thc ability to do this analysis quickly let 
scientists frnm new areas try the algorithm without 
having to invest too n i d i  time and energy 

I t s  effect 
1t:q difficult for me to  overstate FFT‘s itnpor- 

tance. Much of its central place in digital sigual 
and image processing is due to  the fact that it 
made working in the frequency domain equally 
computati(inal1y feasible as working in tlie t en -  
poral or spatial domain. By providing a fast algo- 
rithm for convolution, the FFT cnablcd fast, 
large-integer and polynomial multiplication, as 
well as efficient matrix-vcctor multiplication for 
Toeplitz, circulant, and other kinds of structured 
matrices. More generally, it  plays a key role in 
innst efficient sorts of filtcring algorithms. Modi- 
fications of the FIT arc one approach to  fast al- 
gorithms for discrete cosine or sine transforms, as 
well as Chehyshev transforms. In particular, the 
discrete cosine transform is at the heart of MP3 
encoding, which gives life to  real-time audio 
streaming. Last hut not least, it’s also o m  of the 
few algorithms to make it into the movies-I can 
still recall tlie scene in No MGy Out where the im- 
agc-processing guru declares that he will need to 
“Fourier transform the image” to help Kevin 
Costner sec the detail in a photograph! 

Even beyond these dircct technological appli- 
cations, the FbT influenced the direction of aca- 
dcmic rcsearch, too. ’Ihc FFT was one of the first 
instances of a less-than-straightforward algorithtn 
with a high payoff in cfficiency used to compute 
something important. Furthermore, it raised the 
nahiral question, “Could an even faster algorithm 
be found for the DFT?”  (tlic answer is no7), 
thereby raising awareness of and heightening in- 
terest in the subject of lowcr bounds and tlie 
analysis and devclopnient of efficient algorithms 
in general. With respect to Shmucl Winograd’s 
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lower-bound analysis, Coolcy writes in the dis- 
cussion of the 1968 Arden I-Iousc Workshop on 
FFT, “These are the beginnings, I believe, of a 
branch of computer science which will prohably 
uncover and evaluate other algorithms for high 
speed computers.”8 

Ironically, the F F T s  prominence might have 
slowed progress in other research areas. It pro- 
vidcd scientists with a big analytic hammer, and, 
for many, the world suddenly looked as thmigh it 
were hi11 of nails-even if this wasn’t always so. 
Researchers sometimes massaged problems that 
might have hencfited from other, more appropriate 
techniqncs into a D F r  framework, siinply because 
the FF1‘was so efficient. Onc cxaiiiplc that comes 
to mind is some of the carly spectral-methods work 
to solve PDEs in spherical gcometly. In this case, 
the spherical harmonics are a naniral set of basis 
functions. Discretization for nunicrical solutions 
implies the coinpit“ti(in of discrete Lcgcndrc 
transform (as well as FFl‘s). Many of the early 
cotnputational approaches tried instcad to ail- 
proximate these expansions couiplctcly in terrns 
(if Fourier series, rather than address the develop- 
ment of an efficient I.egendre transform. 

Even now there arc still lessons to learn from rhc 
F“s dcvclopInent. In this day and age, where any 
new tcchnological idea s e e m  fodder for Internet 
vennirc capitalists and patent lawyers, it is natiiral 
to ask, “Why didn’t IDM patent the lTT?” Coolcy 
explained that because Tukey wasn’t an IBM e n -  
ploycc, IKM worried that it might not be able to 
gain a patent. Consequently, IBM had a great in- 
terest i n  putting the algorithni in the public do- 
mniti. T h e  effect was that then nobody else could 
patcnt it either. This did not sceni like such a great 
loss because at the time, the prevailing attihidc was 
that a company made rnoncy in hardware, not soft- 
ware. In fact, the FFl’vas designed as a tool to an- 
alyze huge time series, in theory something only 
supercomputers tacldctl. So, hy placing in the puh- 
lic domain an algorithm that would make tinie- 
series analysis feasible, more big companies might 
have an interest in buying supercomputers (like 
IBM mainframes) to do their work. 

Whether having thc FFT in the public domain 
had the effcct IBM hoped for is nioot, h i t  it cer- 
tainly provided inany scientists with applications 
on which to apply the algorithm. T h e  breadth of 
scientific interests a t  the Ardeii workshop (held 
only two years after the paper’s publication) is truly 
impressive. In fact, the rapid pace of today’s tech- 
nological dcvclopments is in iiiaiiy ways a testa- 
ment to this open development’s advantage. This is 
a cautionary tale in today’s arena ofproprietary re- 

search, and we can only wonder which of the many 
recent private technological discovcries might have 
prospered from a similar aniioimcenient. 

The future FFT 
As torrents of digital data continue to swain into 

our computers, it s e e m  thnt the FFT will continue 
to play a protniucnt role in our aiialysis and under- 
standing ofthis river of data. W h a t  follows is a tirief 
discussion of hihire FFT challenges, as well as a fcw 
new directions ofrelated research. 

Even bigger FFTs 
Astronomy continues to be a chief consiiiiier of 

large FIT tcclinology. T h e  needs of projects like 
iMAP (Microwavc Anisotropy Project) or LIGO 
(Laser InterFenitneter Gravitational-Wave Obscr- 
vatory) require FETs of scvcral (even tens of) giga- 
points. FFTs of this size do not fit in the iliain 
m e m o r y  oftnost machines, and these so-called out- 
ofcore FITS arc an active area ofresearch.9 

As cotiiputing techn~ilogy evolves, undoubtedly, 
versions of the F i T  will evolve to keep pace a n d  
take advantage of it. Different kinds of inenioty 
hierarchies and architectures present new chal- 
Icugcs and opporhiliitics. 

Approximate and nonuniform FFTs 
For a variety of applications (such as fast MRI), 

we need to  compute DPTs for nonuiiiforinly 
spaced grid points and frequencies. Multipolc- 
hascd approaches efficiently compute thcsc quan- 
tities in such a way that the miming time increases 
by a factor of 

where t denotes the approximation’s precision.“’ 
Algebraic approaches hasctl on efficient polyno- 
inial evaluation are also possible.” 

Group FFTs 
The FFT might also he explained and interpreted 

using the language of group representation the- 
ory--working along these lines raises some inter- 
esting avenues for gcncralization, One approach is 
to view a 1D D I T  oflcngth Nas computing the ex- 
pansion of a function defined on C,”, the cyclic 
group of length N ( h e  group of integers mod N) in 
ternis of the basis of irrcducihlc matrix elements of 
Clv, which arc precisely the familiar sampled expo- 
nentials: en(m) = e x p ( 2 x f i k m  / N I .  T h c  FFT is a 
highly efficient algorithm for computing the cx- 
paiision in this hasis. More generally, a hioction on 
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any coinpact group (cyclic or not) 1x1s an expati- 
sion in terms of a basis of irreducible matrix elc- 
menn (which generalize the cxponentials lroln the 
point of view of group invariance). It's nahiral bi 
wonder if efficicnt algorithms for perf(iriiiing this 
change of hasis exist. For example, thc problem of 
efficiently coniputing spherical harinonic expati- 
sions falls into this kamework. 

T h e  first FFT for a tioncommutative finite 
group sccms to have h e m  developcd by N a n  
Willsky in the context of analyzing certain Mar- 
kov processes.'* To date, fast algorithms exist for 
inany classcs of coinpact groups." Areas of ap- 
plications of this work include signal lirocessiiig, 
data analysis, and robotics." 

Quantum FFTs 
Otic of the first great triuiiiphs of thc qnan- 

hnll-computing nlodel is Peter Shori  fast algo- 
rithm for integer factorimtion on a quantum 
c ~ m p u t c r . ' ~  At the heart of Shor's algorithm is a 
subroutine that compntcs (on a qumtuni c o n -  
puter) the DFT of a hinary vector representing 
an integer. T h e  itiyilementation of this trans- 
forin as a sequcllce of one- and two-hit quanhim 
pates, now called the qiiantum FFI; is effectively 
the Cooky-Tukcy FIX rcalized as a particular 
factorization of the Fourier matrix into a product 
of matrices composed as certaio tensor products 
of two-by-two uiiitaly matrices, each of which is 
a so-called local unitary transform. Similarly, 
thc quanhmi soluti(m to thc Modified Dentscli- 
Josza problem uses the matrix factorization aris- 
ing kom Yates's algorith~ii . '~ Extensions of these 
ideas to the more general group transforms 
mentioned earlicr are currciitly Iicing explorcd. 

hat's the FIT-hotli parent aiid 
child of the digital revolution, a 
computational technique at tlic 
nexus of tlic worlds of business and 

entertainment, national security and public coiii- 
tnunication. Ntliongli it's anyone's guess as to  
what lies over tlic next horizon in digital signal 
processing, the FFT will most likely bc in the 
thick of it. 3 
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